On perturbed quadratic integral equations and initial value problem with nonlocal conditions in Orlicz spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Value Problems for Nonlinear Fractional Differential Equations and Inclusions with Nonlocal and Integral Boundary Conditions

In this paper, we study a class of boundary value problems of nonlinear fractional differential equations and inclusions with nonlocal and integral boundary conditions. Some new existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples are given to illustrate the results.

متن کامل

Impulsive Integrodifferential Equations Involving Nonlocal Initial Conditions

We focus on a Cauchy problem for impulsive integrodifferential equations involving nonlocal initial conditions, where the linear part is a generator of a solution operator on a complex Banach space. A suitable mild solution for the Cauchy problem is introduced. The existence and uniqueness of mild solutions for the Cauchy problem, under various criterions, are proved. In the last part of the pa...

متن کامل

On Quadratic Integral Equations of Urysohn Type in Fréchet Spaces

0 u(t, s, x(s)) ds, t ∈ J := [0,+∞), where f : J → R, u : J × [0, T ] × R → R are given functions and A : C(J,R) → C(J,R) is an appropriate operator. Here C(J,R) denotes the space of continuous functions x : J → R. Integral equations arise naturally from many applications in describing numerous real world problems, see, for instance, books by Agarwal et al. [1], Agarwal and O’Regan [2], Cordune...

متن کامل

Semilinear Differential Equations with Nonlocal Conditions in Banach Spaces

In this paper we study the existence of mild solutions for the nonlocal Cauchy problem x′(t) = Ax(t) + f(t, x(t)), 0 < t ≤ b, x(0) = x0, by using the fixed point techniques, which extends and improves some existing results in this area.

متن کامل

Numerical ‎S‎olution of Two-Dimensional Hyperbolic Equations with Nonlocal Integral Conditions Using Radial Basis Functions‎

This paper proposes a numerical method to the two-dimensional hyperbolic equations with nonlocal integral conditions. The nonlocal integral equation is of major challenge in the frame work of the numerical solutions of PDEs. The method benefits from collocation radial basis function method, the generalized thin plate splines radial basis functions are used.Therefore, it does not require any str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2020

ISSN: 2391-4661

DOI: 10.1515/dema-2020-0052